

Joint effect of Learning and Testing Effort in SRGM
with Fault Dependent Correction Delay

Shaik Mohammad Rafi#1 , Dr.K Nageswara Rao#2 , Dr. S . Pallam Setty#3 , Dr. Shaheda Akthar#4

#1 Assoc. Professor, Dept. of C.S.E, S.M.C.E, Affiliated to JNTU Kakinada. A.P, INDIA.

#2 H.O.D, Dept. of C.S.E, P.V.P.S.I.T, Vijayawada, Affiliated to JNTU Kakinada. A.P, INDIA.
#3 Professor, Dept.of C.S. &T, Andhra University, A.P, India.

#4 Principal, Sri Mittapalli Institute of Technology for women, Affiliated to JNTU Kakinada. A.P, INDIA.

Abstract—Software Reliability growth models are helping
the software society in predicting and analyzing the software
product in terms of quality. In this context several software
reliability growth models are proposed in the literature.
Majority of models concentrated on fault detection process,
ignoring the correction. Error detection, correction and
dependency are the important phenomenon for the software
reliability models. In this paper we proposed a new SRGM
model based on correction lag and error dependency in SRGM
with incorporating the testing effort and learning. All numerical
calculations are carried out on real datasets and results are
analyzed. By analyzing the results we can say that our proposed
model fits well for the datasets.

Index Terms—Non homogeneous possoin process, software
reliability growth model, correction lag, testing effort.

ACRONYMS
NHPP : Non Homogeneous Poisson Process
SRGM : Software Reliability Growth Model
MVF : Mean Value Function
MLE : Maximum Likelihood Estimation
TEF : Testing Effort Function
LSE : Least Square Estimation
MSE : Mean Square fitting Error
NOTATIONS
m (t) : Expected mean number of faults detected in time (0,t]
λ (t) : Failure intensity for m(t)
n (t) : Fault content function
m1 (t) : Cumulative number of leading faults detected up to t.
m2 (t) : Cumulative number of dependent faults isolated up to t.
W (t) : Cumulative testing effort consumption at time t.
W*(t) : W (t)-W (0)
w(t) : Current testing effort

a : Expected number of initial faults
r (t) : Failure detection rate function
r : Constant fault detection rate function.
a1 : Total number of initial leading faults
a2 : Total number of dependent faults.
p : Probability factor
θ : Detection rate of initial faults.
Ψ : Inflection factor

I. INTRODUCTION

Software is one important vehicle which is driving the
several electronic and commercial products. The

development in products, software uses makes the increase in
the need of the software. Testing is one important phase of
software development life cycle. Testing is being done
intended to find the errors in software products which are
being added during the upper phases. Reliability is one
important element for software testing where it defines
quality. As the testing proceeds, errors are identified and
removed from the software product to make the quality
improvement in the software product. As the testing
continues every bug is identified and fixed, it increases the
reliability of the software product. Reliability is defined as a
software product has to perform its functionality under given
environmental conditions before it fails .reliability is one
important measure of quality. Software
reliability models are helping the industries from decades in
terms of economically and quantitatively. Software reliability
growth models are described by mathematical models to
show the real time testing environment. Basically software
testing is complex in nature in order to understand to
software testing environment completely
Mathematical models are constructed which re useful in
describing the real time testing environment. Several papers
are proposed in the literature. Generally software reliability
growth models are classified as both analytical and data
driven models [16]. Analytical models have three major
categorized as non homogenous poison process models
(NHPP), markovian models and Bayesian models. A non
homogenous poison process model adopts a stochastic
process to describe the software failure phenomenon.
Software reliability growth models are based on assumptions
depends upon bug fixing. The reliability growth models are
classified as perfect and imperfect debugging models. Plenty
of reliability are proposed to measure the software failure
process successfully [2][4] [8][9][20]. Some of them based
on non homogenous poison process model (NHPP)
[2][4][18][19] are proposed to predict the future failures. The
dependency among software failures can affect our software
reliability [1][3][15][21][22]]. Software cost models and
release policies are being analyzed by Xie et al, 2003,
Yamada et al, 1985 , Pham et al, 2000 ,Huang et al, 2005)
Non homogenous poison process models are influenced by a
parameter m(t) which is a cumulative in number of failures
exposed up to time t. Generally the reliability, models are

Shaik Mohammad Rafi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4961- 4967

4961

categorized into both concave and S shaped models. In 1979
Goel and Okumoto proposed exponential software reliability
growth model based on the shape of cumulative number of
failure parameter m(t).Yamada and Ohba have made
[18][19]simple modifications to the existing reliability
growth models to capture the testing environment and they
proposed delayed s shaped model and inflection s shaped
model, generally the S shaped models are derived by a factor
that as the testing proceeds the testing people will learn about
their environment, which effect the testing. Testing consumes
many resources like time-test cases and man power. Many
reliability growth models are proposed in literature which
considers testing effort (Yamada has considered exponential
and Raleigh testing effort functions into software reliability
growth models[17]. Huang (2005) has proposed a reliability
growth model by considering logistic testing effort function.
Software reliability is dynamic in nature. Software may non
monotonically increases or decreases due to dynamic nature
of the software. Remaining section of the paper contains
section II describes the review of error correction and
detection models. Section III will explain testing effort
dependent SRGM with correction lag and model derivation.
Section IV describes the numerical calculations and goodness
of fit techniques and the performance analysis of the models.

II REVIEW OF SOFTWARE ERROR DETECTION AND

CORRECTION
Software reliability models are mathematical models which
describes the realistic phenomenon of software testing during
software development life cycle. These models are embedded
with fault detection , correction and fault introduction. Many
papers are proposed in the literature in this context. But
several of them are just concentrated on fault detection
process Marjory. Among several papers they assume faults
are corrected as soon as they are detected. But it is not always
true. Software product is complex in nature. So correcting the
detected faults is quite cumbersome task for the correct
correction people. So fault correction is time lag
phenomenon. (Huang et al, 2004, Yanjun shu et al , 2009).
The number of remaining uncorrected faults is the difference
between number of detected faults and corrected faults
(Yanjun Shu et al, 2009). Xie et at,2007 studied and analyzed
the number of corrected and detected faults based on the
medium based software. Schneidewnd et al,2003) first person
proposed a fault correction as constant delay in the software
reliability model. Musa et al,1987 made an analysis on the
dataset consisting of correction and detection fault of real
time data control T1 project.

III SOFTWARE RELIABILITY GROWTH MODEL WITH

TESTING EFFORT AND CORRECTION DELAY.
Many NHPP software reliability growth models are proposed
to access the software reliability. Software reliability
measures the how long a software can give correct service
before it deviates from required service in a given conditional

environment. Before software released into market an
extensive test is conducted. Software with more errors when
released into the market incurs high failure costs [Pham et al,
2000]. For that more sophisticated testing is needed to track
the errors. During the software development many resources
are consumed like manpower, test cases. TEF describes test
expenditure in testing process. The TEF, which gives the
effort, required in testing and CPU time the software for
better error tracking.
A) SRGM with Testing effort functions
The following assumptions are made for software reliability
growth modeling (Yamada et al, 1993,, Huang and Kuo et al,
2002, Huang et al, 2007)
(i) The fault removal process follows the Non-
Homogeneous Poisson process (NHPP)
(ii) The software system is subjected to failure at random
time caused by faults remaining in the system.
(iii) The mean time number of faults detected in the time
interval (t, t+Δt) by the current test effort is proportional for
the mean number of remaining faults in the system.
(iv) The proportionality is constant over the time.
(v) Each time a failure occurs, the fault that caused it is
immediately removed and no new faults are introduced.
 We can describe the mathematical expression SRGM
with a testing-effort based on following

() 1
(())

()

dm t
r a m t

dt w t
    (1)

Solving the above equation based on condition m(0)=0; we
get

() (1 exp(*()))m t a r W t     (2)

And intensity function

() () exp(*())t a r w t r W t       (3)

From the above (v) condition states that faults detected
immediately removed but due to environmental conditions
and complexity of the software faults cannot be removed as
quickly. Every fault will take some time to remove it so it
impacts a delay in the assumed model. Let us consider the
delay factor function is given by [3][15][22]

()t .

From the above we can modified the (v) assumption and new
modified MVF is

() (())

(1 exp() exp(()))

m t m t t

a r t r t




  
     

 (4)

Now comparing the eq (2) and eq(4) we get
() *()

() *()

t t W t and

t t W t




 
 

 (5)

Now new modified SRGM with testing effort is given by
() (1 exp(*[*() ()]))m t a r W t t     (6)

Shaik Mohammad Rafi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4961- 4967

4962

Theorem 1:
(a) Now new intensity function is given by

()
()

()
exp([*() ()]) (())

0, 0.

dm t
t

dt
d t

a r r W t t w t
dt

a r







       

 

 (7)

(b) ()
1

d t

dt


 (8)

(c) the reliability of above SRGM with TEF and delay factor
is given by

(/) exp((exp(*())exp(())

exp(*())exp(())))

R t t a rW t t r t t

rW t r t




       
  

 (9)

Model 1: NHPP SRGM with testing effort :
This is very popular model many authors have used it.
Now let us consider equation (4) and take initial condition as

()
() 0 1

d t
t and

dt

   then

 (10)
We obtain the equation as [31]

() (1 exp(*()))m t a r W t    

 (11)
Model 2 : Delayed S shaped model with Testing effort
Popular S shaped model is proposed by Yamada which takes
the testers capability in to consideration during
testing[18][19]. It states that when the testing begins testers
are not familiar with environment as the testing continues
testers gain the knowledge. In this model failure rate initially
increases and later decays.

If 1
() ln(1 *())t r W t

r
     (9)

Then () ()
1

1 *()

d t w t

dt r W t


  

 
 (12)

Because w(t) < W*(t). equation (9) satisfies the theorem 1(b)
Now from the eq.(4) we get[9]

() (1 exp(*())(1 *()))m t rW t rW t    (13)

The intensity for the above equation is given by
2

() () *() exp(*())t a w t W t r W tr        (13)

Model 3: Inflection S shaped model with testing effort
Inflection S shaped model proposed by Ohba et al 1984. it
states that some faults are not detected before other faults are
identified. Now from delay function

1 1
() ln

1 exp(*())
t

r r W t




 
       

 (14)

And () () exp(*())
1

1 exp(*())

t w t rW t

dt rW t

 


   
      

 (15)

The MVF for above model [25]

1 exp(*())
()

1 exp(*())

r W t
m t a

r W t
   

      
 (16)

B. Considering Fault dependency and debugging
time lag in testing effort dependent software
reliability growth model [3]
The following are the assumptions for the NHPP model
1) Fault detection and correction model follow the NHPP.
2) Software product under goes failure at random times and
causing the failure of the product.
3) All faults are categorized as either leading faults. The total
number of faults in the system is finite.
4) The mean number of leading faults in the interval (t , t+ Δt
] is proportional to the product of current testing effort and
remaining leading faults in the system. This proportionality is
constant over the time.
5) The mean number of detected faults in the time interval (t ,
t+Δt] is proportional to the product of current testing effort
and remaining dependent faults.
6) The dependent faults are not removed immediately but
delayed by the function φ(t).
7) No new faults are introduced in to the system.
8) Testing effort is inversely proportional to the pth power of
learning factor [Xia et al ,1992]
According to the assumption 8 the current testing effort is
given by

()
[()]

p

k
w t

f t
 (17)

Where f(t) is a learning factor and an increasing function of t.
Here we took the same learning function used by the Xia et
al,1992 [23]

()
()

(1)

t
f t

bt

 



 (18)

And cumulative testing effort is given by eq (17)

0 0

()
(1)

()

p
t t

p

k
w t dt

bt
t 




  
 (19)

For the mathematical simplification we took p value as 2 now
cumulative testing effort is given by

(20)

So from the above assumption (3) we have

1 2

a a a  (21)

We assume [15]

Shaik Mohammad Rafi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4961- 4967

4963

1 2
() () ()m t t tm m  (22)

And also we assume testing effort function is same for the
both leading and dependent faults.
Based on the above assumption (4) we get the following
equation

 1
1 1

() 1
[()]

()

t
r t

dt w t
dm a m    (23)

Solving the above equation based on the conditions

1
() 0tm  the MVF we get

1 1
() (1 exp(*()))t rW tm a    (24)

From the assumption 5 and 6 we have

2 1
2 2

() (())1
[()]

()

t t t
t

dt w t a
dm ma m





    

(25)
Case 1: if () 0t  then from the equation (20) we have

2 1
2 2

() ()1
[()]

()

t t
t

dt w t a
dm ma m    

(26)
And

2
2 2

1

() 1
[()]

()

(1 exp(*()))

t
t

dt w t

rW t

a

dm a m

a

    

  

(27)
Solving the above equation under boundary conditions

2
(0) 0m  we get

(1 exp(*()))
(*())

2 2
() [1]

rW t
p W t

rtm a e
  

    

(28)

Now let
1 2

(1)ap and p aa a   and from the

equation 17 we get total MVF
* ()

1

(1 e x p (* ()))
(* ())

2

() (1)

[1]

r W t

r W t
p W t

r

m t a e

a e




 
  

   

 

(29)

And
*()

(1 exp(*()))
(*())

() (1)

(1) [1]

rW t

rW t
p W t

r

m t ap

a p

e

e




 
  

   

  

(30)

Case 2 : if
1

() ln(1 *())t rW t
r

   

(31)
From the equation 20 we obtain the following equation

2
2 2

1

() 1
[()]

()

(1 (1 * ()) ex p (* ()))

t
t

d t w t

rW t rW t

a

d m a m

a

    

   

(32)

Solving the above equation based on condition
2
(0) 0m 

we get

1 1
() (1 exp(*()))

[*()]

2 2
() [1]

rW t
W t

a r
a a

tm a e
     

   
 
   

(33)

Required MVF

 
(1 exp(*()))

[() *()]

() 1 (1 *())exp(*())

(1) [1]
a p rW t

p W t
r

m t a p rW t rW t

a p e
         

 

     

    

(34)

Case 3: if
ln(1)

()
(1 exp(*()))

t
rW t




 
     

 then from the

equation 20 we get

2

2 2

1

() 1
[]

()

(1 ex p (* ()))1

(1 ex p (* ()))

t

d t w t

rW t

a rW t

d m a m

a





   

   
      

(35)
Solving the above equation based on the boundary conditions
m(0)=0 we get the equation

2 2
() 1

(1)
(1 exp(*()))

(1 exp(*()))
(1) exp(*())

p

r

p

r

t
rW t

m a
rW t
rW t












 
  

 
 
 

 
 
 
 
   
 
 
 
 
 

 
    

   
    

(36)

From above MVF

(1 exp(* ()))
()

(1 exp(* ()))

(1) 1

(1)
(1 exp(*()))

(1 exp(*()))
(1) exp(*())

p

r

p

r

a p rW t
m t

rW t

a p
rW t

rW t
rW t














 
  

 
 
 

    
     

 
 
 
 
     
 
 
 
 
 

 
    

   
    

 (37)

IV NUMERICAL EXAMPLES
A. Software failure data
First set (DS1) of actual data is from the study by
Ohba(1984)[20]. The system is PL/1 data base application
software , consisting of approximately 1,317,000lines of code
.During nineteen weeks of experiments, 47.65 CPU hours
were consumed and about 328 software errors are removed.
Second dataset (DS2) used here is taken from the technical
report for the project of Rector vessel Level Indication
system used to monitor the level of water with in the rector
vessel [4]. It took 25 weeks to complete the test. During the
test phase, 230 software faults are removed.

Shaik Mohammad Rafi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4961- 4967

4964

Table 1: Failure dataset 2 (DS2)
Week CNF Week CNF Week CNF Week CNF

1 44 8 100 15 197 22 230
2 75 9 124 16 205 23 230
3 75 10 130 17 214 24 230
4 75 11 130 18 215 25 230
5 75 12 159 19 225
6 75 13 175 20 227
7 75 14 181 21 228

B Model comparison criterion
We use the following model comparison criterion where
these will describe the best fit for given model.
1) Means Square Error :
Here we used MSE [M.Xie et al, 1991, C.Y Huang& Kuo
2007, H.Pham 2000] which gives real measure of the
difference between actual and predicted values. The MSE
defined as

2

1
[()]

n

i
i i

MSE
n

m t m



 (38)

A smaller MSE indicate a smaller fitting error and better
performance.
2) Coefficient of Multiple determinations (R2):[13]
Which measures the percentage of total variation about the
mean accounted for the fitted model and tells us how well a
curve fits the data. it is frequently employed to compare
model and access which model provides the best fir to the
data. The best model is that which provides higher value for
R2., which is close to 1.

3) SSE : it is calculates as [8]
2

1

[()]
n

i

SSE ii my t


  (39)

Here yi is the total number of failures observed at a time ti
according to the actual data and m(ti) is the estimated
cumulative number of failures at a time ti.
C. Performance analysis
This section mainly constitutes the comparison of proposed
model with some other models based on the above discussed
datasets. Here we estimated the parameters by using LSE.
Due to the complexity of the models we used SPSS package
for the model parameter estimation. The estimated parameters
of model 1 from eq(28) for dataset 1 is a=331.3, alpha=3,
b=3.341, β=0.02767, k=0.25, p=0.248, r=0.5, θ=0.02828.
The estimated parameters for model 2 from eq.(36) is 333.5,
alpha=3.175, b=1.069, β=0.03 k=0.9996, p=0.245, ψ=0.5,
r=0.99 and θ=0.07046 .
Fig.1 plots the comparison between observed failure data and
the data estimated by model 1 eq(28). All estimated values
for various models are listed in Table 2. From the Table 2 we
can see that our proposed model has less MSE and SSE. The
lower the value of MSE and SSE, it represents the best fit.
Fig 2 plots the cumulative numbers of failures versus time
for the estimated and actual datasets (DS2). The comparisons
for proposed and other models are shown in the table 3.

Fig 1. Cumulative Number of errors Versus Time for DS 1.

Fig 2. Cumulative number of errors Versus Time for DS2.

Shaik Mohammad Rafi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4961- 4967

4965

Table 2 ESTIMATED PARAMETER VALUES AND MODEL COMPARISION FOR DS1

Models a r SSE R2 MSE

Model 1 from eq.(30) 331.3 0.5 662.8 0.9966 55.23

Model 2 from eq. (37) 333.5 0.99 631.5 0.9968 48.58

SRGM with exponentiated weibull TEF[13] 359.5 0.1416 1505 0.9923 88.36

Model 1 by Huang (et al, 2006)[3] 420.1 0.0759 -- -- 89.36

Model 2 by Huang (et al, 2006)[3] 481.3 0.0199 -- -- 92.83

SRGM with Logistic TEF[6] 395.6 0.0416 2167 0.989 127.46

Delayed S shaped model with Logistic TEF 319.3 0.1339 11060 0.9436 650.25

SRGM with Rayleigh TEF 459.1 0.02734 5100 0.974 299.98

Delayed S shaped model with Rayleigh TEF 333.2 0.1004 15170 0.9226 892.2

G-O model 760.5 0.03227 2656 0.9865 156.2

Yamada Delayed S shaped model 374.1 0.1977 3205 0.9837 188.51

Table 3 ESTIMATED PARAMETER VALUES AND MODEL COMPARISION FOR DS2

Models a r SSE R2 MSE

Model 1 from eq.(30) 238.4 0.99 1217 0.9885 57.95

G-O model 326.4 0.5569 6330 0.9404 275.2

Yamada Delayed S shaped model 247.2 0.191 10230 0.9037 448.78

From the table 3 we can see that our proposed model has
less MSE and SSE value, which shows our model best fit for
the dataset (DS2). The estimated model 1 parameters for the
dataset 2 is a=238.4, alpha=5.814, b=5.6, β=0.25, k=2,
p=0.2634, r=0.98, and θ=0.004946.
The SSE values and MSE values for these models are very
less than other models. Lower values of predicted values
indicates our models better fit for the datasets than other
models.
Based on above parameters we made an analysis that the
SRGM is totally influenced by the nature of the faults. The
number of initial faults are influencing the system more
compared with other factors. And other two important
factors line fault detection and correction also play an
important role.
Here we have added a new concept testing effort we defines
as number test cases , manpower and time of testing. There
is substantial relation between testing effort and the
parameter p.The dynamic changes in the value of p indicates
and give the information to managers how much effort they
required. Depending on the p value they can assign the
required resources

V CONCLUSION

In this paper we have designed a new models testing effort
and learning dependent SRGM with correction lag.
Correction delay is considered to be an important factor in
software reliability models where time of correction delay is
not been neglected. Parameters of new models are estimated
on real datasets, and comparisons are done to see the
goodness of fit techniques. Our proposed models are better
fit than other models.

REFERENCES
[1] A. Wood, Predicting software reliability, IEEE computers 11 (1996)

69–77.
[2] A.L Goel, and Okumoto, K., “Time-Dependent Error-Detection Rate

Model for Software Reliability and Other Performance Measures”,
IEEE Trans. Reli. 20,206-2110979).

[3] C.Y.Huang, and Lin, C. D., 2006, “Software reliability analysis by
considering fault dependency and debugging time lag”, IEEE
Transactions on Reliability, vol. 55, no. 3, pp. 436-450.

[4] C.Y Huang ,C. T. Lin , H. K.Lo, Y.S. Su and B.T Lin “ introduction
to software Reliability and its applications” Technical Report
,NHTU EECS industrial affiliates program , Jan 2004.

[5] C.Y.Huang, Lyu M.R “Optimal Release time for Software systems
Considering Cost, Testing-effort and Test efficiency” IEEE
Transaction on reliability VOL 54 No , December 2005.

[6] C.Y Huang and S. Y. Kuo, “Analysis and assessment of
incorporating logistic testing effort function into software reliability
modeling,” IEEE Trans. Reliability, vol. 51, no. 3, pp. 261–270,
Sept. 2002.

[7] C.Y Huang, Lyu and Kuo “An Assesment of testing effort dependent
software reliability Growth model”. IEEE transactions on Reliability
Vol 56, No: 2, June 2007

[8] H.Pham, (2000), “Software Reliability, Springer-Verlag”, New
York, NY.

[9] J.D Musa, Iannino, A., Okumoto, K., 1987. ”Software Reliability,
Measurement, Prediction and Application”. McGraw Hill.

[10] M. Xie, 1991, Software reliability modeling, World Scientific,
Singapore.

 [11] M. Xie, and Yang, B. (2003). “A study of the effect of imperfect
debugging on software development cost.” IEEE Trans. Software
Eng. 29, 471-473.

[12] M. Xie, Hu, Q. P., Wu, Y. P., Ng, S. H., 2007, “A study of the
modeling and analysis of software fault-detection and fault-
correction processes”, Quality and Reliability Engineering
International, vol. 23, no. 4, pp. 459-470.

[13] N. Ahmad, Bokhari M U，Quadri S M K，Khan MGM “The

exponentiated Weibull software reliability growth model with
various testing-efforts and optimal release policy” International

Journal of Quality Reliability Management，2008，25(2) : 11-

235．

Shaik Mohammad Rafi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4961- 4967

4966

[14] N.F Schneidewind, 2003, “Fault correction profiles”, Proceedings
of the 14thInternational Symposium on Software Reliability
Engineering, pp. 257-267.

[15] P.K Kapur, Younes, S., 1995. “Software reliability growth model
with error dependency”. Microelectronics and Reliability 35 (2),
273–278..

[16] S. Yamada, and Osaki,S. (1985), “Cost-reliability optimal release
policies for software systems”, IEEE Transactions on Reliability,
34(5), 422-424.

[17] S. Yamada, Hishitani, J., Osaki, S., 1993. “Software reliability
growth model with Weibull testing effort: a model and application”.
IEEE Transactions on Reliability 42, 100–105.

[18] S. Yamada, Ohba, M., Osaki, S. (1983). “S-shaped reliability growth
modeling for software error detection”. IEEE Trans. Reliability. 12,
475–484.

[19] S. Yamada, Ohba,M., and Osaki.S. (1984), “S–shaped software
reliability growth models and their applications”, IEEE Transactions
on Reliability, 33(4), 289–292.

[20] M.Ohba, “Software reliability analysis models”. IBM
Journal of Research and Development 1984, 28 (4), 428–
443.

[21] Y.P. Wu, Hu, Q. P., Xie, M. and Ng, S. H., 2007, ‘Modeling and
analysis of software fault detection and correction process by
considering time dependency’, IEEE Transactions on Reliability,
vol. 56, no. 4, pp.629-642.

[22] Yanjun Shu, Hongwei Liu, Zhibo Wu and Xiaozong Yang “
Modeling of software fault detection and correction Peocess Based
on Correction lag, 2009.

[23] Xia G, Zeephongsekul P, Kumar S “ Optimal Software release
policies for models incorporating learning in testing “ Asia apecific
journal of Operation research , 9, 221-234, 1992.

SK.MD.Rafi: Received Bachelor of Technology in Computer Science And
Engineering, Master of Computer Science and Engineering, and pursuing
PhD(computer science and Engineering) from J.N.T university Kakinada.
Presently working as Assoc. Professor in the Department of Computer science
and engineering in Sri Mittapalli College of Engineering. Area of interest
software engineering, reliability and quality control, Software Architecture
Recovery. Published many research papers in various International journals
(mdrafi.527@gmail.com)
Dr. K. Nageswara Rao: Received PhD from computer science and
engineering from Andhra University. Presently working as Head & Professor in
PVP Siddhartha engineering college. Published many papers all over the world
and guiding many research scholars. Here is a member of IEEE and CSI.

Dr. S. Pallam Setty : Received PhD from computer science and engineering
from Andhra University Presenty working as a Professor in the department of
computer science and engineering , Andhra university Visakhapatanam. Here is
member of many professional bodies and guiding the many research scholars.

Dr. Shaheda akthar : received Bachelor of Computer Science and Master
of Computer Science from Acharya Nagarjuna University, M.S from B.I.T.S
Pilani. Ph.D from Acharya Nagarjuna University.Presently working as Principal
in Sri Mittapalli Institute of technology for women. Area of interest software
engineering, reliability and quality control, Software Architecture Recovery.
Published many research papers in various International journals

Shaik Mohammad Rafi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4961- 4967

4967

